
 
International Journal of Engineering Sciences & Research 

Technology 
(A Peer Reviewed Online Journal) 

Impact Factor: 5.164 

  

  IJESRT 

 

 
 

 

 

 

  

Chief Editor        Executive Editor    

Dr. J.B. Helonde     Mr. Somil Mayur Shah 
 

 

 

                      Website: www.ijesrt.com        Mail: editor@ijesrt.com 
O 
 

 
 

       IJESRT: 11(4), April, 2022                              ISSN: 2277-9655 

 
I 
 
                 X  

http://www.ijesrt.com/
mailto:editor@ijesrt.com


  ISSN: 2277-9655 

[Soni et al., 11(4): April, 2021]                                                                            Impact Factor: 5.164 

IC™ Value: 3.00  CODEN: IJESS7 

htytp: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [1] 

    
IJESRT is licensed under a Creative Commons Attribution 4.0 International License 

 

IJESRT  
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH 

TECHNOLOGY 

AN EFFICIENT INSTRUCTION-LEVEL ENERGY ESTIMATION MODEL FOR 

EMBEDDED SYSTEMS 
Devi. K. S , Prof. V. Gopi 

PSN  College of Engineering & technology, Tirunelveli, Tamil Nadu, India. 

 
DOI: https://doi.org/10.29121/ijesrt.v11.i4.2022.1  

ABSTRACT 
To optimize the energy consumption embedded systems, the estimation of energy consumption of the embedded 

applications are very important. This paper proposes a simple but effective instruction-level energy estimation 

model for embedded systems. For case study purposes, the model parameters were determined for a commonly 

used ARM9TDMI-based microcontroller. The total  energy consists of the energy consumed by the processor 

core, flash memory, memory controller, SRAM etc. The model parameters that are determined includes op-code 

of instructions, number of shift operations, register bank bit flips, instructions weight and their Hamming distance, 

different types of memory accesses, the effect of pipeline stalls etc. To validate the proposed model, a physical 

hardware platform was developed which is having energy measurement capabilities. For several experiments 

conducted on   various embedded applications from  MiBench benchmark suite and less than 6% error in the 

energy consumption estimation was shown. Also an energy profiler tool was developed for the systems that use 

ARM9TDMI processors which provides valuable information and guidelines for software energy optimization. 

1. INTRODUCTION 
Embedded systems play a major role inday to day life of people in different areas. Mobile phones, washing 

machines, satellites etc are a few examples for devices that are having a processor embedded on them. A wide 

group of systems are mobile, battery powered devices, with limited source of energy. Thus, consumption of energy 

is an important aspect in embedded system design phase- for any application, itself. This helps the designers in 

optimizing the battery lifetime. Software is responsible for the large portion of energy consumption, in the case 

of an embedded system. Hence, an efficient model is necessary for the energy estimation. Mainly, there are two 

models for embedded instruction level energy optimization: measurement-based and simulation-based. 

 

In the simulation-based approach a simulation model of the target hardware is used to run the applications and 

calculate the energy consumption of each part of the system which may be as detailed as gate level[2] or as 

abstract as  behavioral level[3]. This approach needs the simulation model of all hardware modules that are 

mostly unavailable or very expensive. Also, evaluating the impact of a small change in an instruction opcode 

or operands on the total energy consumption of the system requires rerunning the simulation. 

 

Measurement-based methods use data obtained from a physical target device. Most of the models [4],[5],[6], 

associate the instructions with the corresponding energy cost. The total application energy consumption is the 

aggregate cost of  all  executed instructions that can  be calculated by running the application in an emulator. 

The main advantage of measurement-based methods is high accuracy in the energy estimation due to the real 

values obtained from the target platform. 

It should be noted that for most of the commercially used microcontrollers (e.g., AT91SAM7X256 considered 

in this paper) there is no authentic SPICE (or any other detailed) sim- ulation model; hence, it is not possible to 

adopt a simulation- based approach. Furthermore, we believe that as measurement- based approaches use 

physical and real systems, they are al- ways more accurate than simulation-based approaches. Hence, in this 

paper we adopt a measurement-based approach. 

Energy estimation models are also categorized according to  their  scope.  The  models  presented  in  [4],  

[5],  and  [7] only model the processor core and the model presented in [6] models an embedded system 

including a microcontroller, external RAM, and external A/D converter. 

http://www.ijesrt.com/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.29121/ijesrt.v11.i4.2022.1


  ISSN: 2277-9655 

[Soni et al., 11(4): April, 2021]                                                                            Impact Factor: 5.164 

IC™ Value: 3.00  CODEN: IJESS7 

htytp: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [2] 

    
IJESRT is licensed under a Creative Commons Attribution 4.0 International License 

In this paper, we introduce a new instruction-level energy estimation model and tool for an ARM9TDMI-based 

micro- controller including the processor core, internal Flash and SRAM memories. While our model is simple 

enough to be implemented in any instruction set simulator, it provides good accuracy and can be used to 

estimate the energy consump- tion of the processor core (ARM9TDMI), SRAM, and Flash memory units of 

an embedded system. Also, the process of deriving the model allows for easy recalibration of the model for 

other platforms. The model is based on parameters such as instructions type, number of executed shift 

operations, register bank bit flips, weight and Hamming distance of the instruction words, and it has been 

validated using the MiBench benchmark suite [8]. Also, different types of memory accesses and pipeline stalls 

have been considered. 

Compared with previous models, the new model provides; 

1) equal or better accuracy as compared to  [3], [7], and [9]. But this comparison might not be applicable to 

other previous works. 

2) does not need cycle-accurate simulation that improves the simulation speed ( unlike the model [4]). 

3) is validated  by  a  physical  hardware  implementation    using MiBench [8] benchmarks that are considered as 

representatives for  embedded applications. 

4) proposes a  simpler  model  for  estimating the  inter in- struction energy consumption that improves the 

simulation speed of large workloads.  

5) is suitable for a wide range of applications (unlike application specific estimation models such as the model[6], 

[12]). 

6) considers the energy consumption of Flash memory (unlike [4], [5], [7], [9], [11], and [6]) and SRAM (unlike 

[4], [5], [7], and [9]). Those previous works that consider memory units usually report the energy consumption of 

memory units as a whole. However, here, the energy consumptions of SRAM and FLASH units have been 

considered separately, enabling designers to analyze and optimize the energy consumption of each unit 

individually. 

Most of the studies calculate the model coefficients by running sequences of instructions and measuring the energy 

consumption of the system during the execution cycles of each instruction. But certain studies[7] have used a 

“black-box” or “stimulus-response” approach where a set of test programs are executed on the hardware platform, 

the energy consump- tion  is  measured,  and  the  model  parameters  are  extracted using  the  regression  methods.  

As  this  approach  does  not require detailed information about the internal structure of the processor, it improves 

the model retargetability. This model is similar to [4] and it is tested by executing randomly generated  instructions 

on an ARM7TDMI core. It only estimates the  energy consumption of the processor and does not cover the energy 

consumption of memories or peripherals. 

Here, a new simplified version of  the processor energy estimation model has been introduced. The parameters 

of this simplified model do not require cycle-accurate simulation. The energy consumption of memories is also 

modelled [1 1 ]  but with a smaller number of parameters. For hardware energy measurement a stimulus-response 

approach similar to [7] has been used. 

 

2. MEASUREMENT METHOD AND SYSTEM ARCHITECTURE 

 
Fig. 1.   Architecture of our measurement system 

Precise measurement of the energy is one of the most important challenges in utilizing measurement-based 

methods. Some measurement-based studies [13],[1],[14] calculate the energy consumption by reading the average 

current drawn by the system from the power supply. We have used a similar approach by placing a 1-ohm resistor 

at the power supply pin of the microcontroller. The measured current (which is read by a high frequency 

oscilloscope) and the application execution time are sent to the host computer for calculating the energy 

consumption. Fig. 1 illustrates this architecture. 

Here, an AT91SAM7X256 microcontroller [15] (based     on ARM9TDMI processor core) is used as the 

target platform. The internal structure of this microcontroller is shown in Fig. 2. As we only concentrate on the 

energy consumption  of  the  processor  core,  SRAM  and  Flash,  all other modules are disabled by setting the 

http://www.ijesrt.com/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


  ISSN: 2277-9655 

[Soni et al., 11(4): April, 2021]                                                                            Impact Factor: 5.164 

IC™ Value: 3.00  CODEN: IJESS7 

htytp: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [3] 

    
IJESRT is licensed under a Creative Commons Attribution 4.0 International License 

appropriate flags in the initialization part of the program source code. The Flash memory is used for storing the 

code and read-only data while the SRAM is utilized as runtime data memory. The  ARM9TDMI core  is  a  32-

bit  RISC  microprocessor specialized for low-power applications and it is capable of achieving very high MIPS 

per watt with a five-stage pipeline and cache memory. The pipeline stages include instruction fetch (IF), decode 

(ID), and execute (EX), memory (M) and write back(WR). ARM9TDMI  is a successor to the popular  

ARM7TDMI core. ARM9 supports both 32-bit ARM and 16-bit Thumb instruction sets. 

 

 
Fig. 2.   Microcontroller internal  structure.  Our  proposed  model  estimates the energy consumption 

of the CPU, Flash memory, SRAM, and memory controller. 
 

3. PROPOSED ENERGY CONSUMPTION MODEL 
Most software programs that run on embedded processors consist of two parts. 

1) An initialization part that configures system modules, initializes program variables, etc. This part of the pro- 

gram is executed only once at the start of the program in order that the system gets ready to perform its main 

operation. 

2) The main part that is usually implemented as an endless loop. 

From an energy consumption viewpoint, we can ignore the initialization part and assume that the system always 

operates in its main part. This is because when we turn an embedded system on, it is in the initialization phase 

for only few micro seconds and then it goes into the main phase where it operates for hours. This implies that 

almost all the energy consumption of an embedded system is because of the main phase and not  the  

initialization  phase.  Based  on  this  assumption,  in this paper, we do not consider applications where there 

is no differentiation between initialization and main parts. 

The total energy consumption of each instruction is expressed as the sum of fetch energy (Efetch), decode 

energy (Edecode), execute energy (Eexecute ),memory state (Ememory), write back (Ewrite) and static energy 

(Estatic ), where 
𝐸𝑓𝑒𝑡𝑐ℎ =  𝐸𝑐𝑛𝑡𝑟(𝑐𝑜𝑑𝑒)  +  𝐸𝐹𝑙𝑎𝑠ℎ(𝑐𝑜𝑑𝑒)  +  𝐸𝐼𝐹  

𝐸𝑑𝑒𝑐𝑜𝑑𝑒 =  𝐸𝐼𝐷 
𝐸𝑒𝑥𝑒𝑐𝑢𝑡𝑒 =  𝐸𝐸𝑋 +  𝐸𝑐𝑛𝑡𝑟(𝑑𝑎𝑡𝑎)  +  𝐸𝐹𝑙𝑎𝑠ℎ(𝑑𝑎𝑡𝑎)  +  𝐸𝑆𝑅𝐴𝑀  +  𝐸𝑠𝑡𝑎𝑙𝑙  (1) 

(Ecntr(code)  is the amount of energy consumed in the memory controller  caused  by  the  code,  Ecntr(data)   

is  the  amount  of energy consumed in the memory controller caused by the data, EFlash(code)   is the amount 

of energy consumed in the Flash memory caused by the code and EFlash(data)  is the amount of energy 

consumed in the Flash memory caused by the data.) Since we have disabled all modules except the core, 

memories and the memory  controller,  there  must  be  no  instruction that causes energy consumption in the 

peripherals. However, the microcontroller datasheet does not  clearly specify how the peripherals are disabled. 

If their power supply lines are completely cut off, then there will be no Estatic. But if the supply lines are 

not cut off, and hence, the circuitry is turned on but inactive, they may consume a small amount of static power, 

which means Estatic  will not be zero. 

 

http://www.ijesrt.com/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


  ISSN: 2277-9655 

[Soni et al., 11(4): April, 2021]                                                                            Impact Factor: 5.164 

IC™ Value: 3.00  CODEN: IJESS7 

htytp: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [4] 

    
IJESRT is licensed under a Creative Commons Attribution 4.0 International License 

 
Fig. 3.   Read access count of the Flash memory and SRAM in the MiBench benchmark suite applications 

 

Ememory  only depends on the number of memory accesses (for data transfer) during the program execution. 

Note that cal- culating some of these energy segments needs cycle-accurate simulation of the program, however, 

we estimate them using other parameters that can be calculated during instruction-level simulations. 

 

A.  Memory Energy Consumption Model  
Generally, the energy cost of accessing the RAM can be modeled with the number of read and written bytes. 

Analyzing the MiBench benchmark suite[8] applications (Fig. 3) shows that about 30% of the memory accesses 

target the Flash memory. To analyze the difference between the energy consumption of the Flash memory and 

SRAM, another experiment was  conducted with  two  sets  of  test  programs (Benchmark 1 and Benchmark 2). 

These benchmarks are iden- tical, except for the target address space. While the target ad- dress space of 

Benchmark 1 is within the Flash (0×100 000), the target address space of Benchmark 2 is within the SRAM 

(0×200 000). These benchmarks were executed with different target addresses and  their energy consumptions 

were mea- sured. We observed that the average energy consumption of Benchmark 1 is 20% higher than that of 

Benchmark 2. The results also show that the energy consumption of  accesses to different locations of the 

same memory module (SRAM or Flash) are almost constant. Hence, only the number and type of the memory 

accesses are considered in the memory energy estimation model and not the target address. Due to the notable 

share of the Flash memory access in the total application memory accesses (see Fig. 3) and the difference between 

the energy consumption of Flash memory accesses and SRAM accesses, two separate energy parameters are 

considered for  the  Flash  and  SRAM  read  accesses  in  our energy  model.  In  the  context  of  embedded 

systems, Flash write operations are relatively rare and are usually performed during the offline phase 

(programming/configuration phase) of an embedded system where system can be connected to elec- tricity power 

lines and does not use battery. However, during the normal operation of embedded systems where system is 

battery-operated (and hence energy consumption and energy estimation is prominent), the system usually accesses 

the Flash by read operations (for example to fetch instructions), and hence, we have to consider Flash read 

operations in energy estimation. 

B. Processor Core Energy Consumption Model 

The energy consumption of the different pipeline stages are grouped together as the processor core energy 

consumption. Some  previous  studies  have  shown  that  the  energy  consumption of the processor core during 

the execution of an instruction can be divided into three parts: i) the base energy cost, which only depends on the 

current instruction, ii) the interinstruction cost, which is the amount of energy consumed by the processor during 

the consecutive execution of different instructions, and iii) the pipeline stall cost [4], [5], [7], [9] 

In most cases, the interinstruction energy cost is about 5% of the base instruction cost [9]. Thus, we simplify 

the model by ignoring detailed interinstruction cost estimations and use other parameters, considering the internal 

structure of the processor core [16]. These parameters include the Hamming distance and weight of the 

instructions, number of bit flips in the register bank, and the number of shift operations. 

1)   Instructions Word Hamming Distance:  Any change in the input signals of a circuit can cause a series of 

activities in the circuit. In some designs these subsequent activities and their corresponding energy consumption 

have a direct relation- ship to the changes in the input signals. To exploit this idea in our proposed model, the 

effect of the instruction Hamming distance on  the  core  power  consumption was  analyzed by running a series 

http://www.ijesrt.com/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


  ISSN: 2277-9655 

[Soni et al., 11(4): April, 2021]                                                                            Impact Factor: 5.164 

IC™ Value: 3.00  CODEN: IJESS7 

htytp: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [5] 

    
IJESRT is licensed under a Creative Commons Attribution 4.0 International License 

of benchmarks. Each of these benchmarks contains a  large amount of  two  different types of  instruc- tions. 

Benchmark 1 comprises two separate blocks where all instructions of each block are of the same type. 

Benchmark 2 orders the instructions in an interleaved manner where each instruction of type A is followed by 

an instruction of type B and vice versa.   The energy consumption of Benchmark 2 shows about 6% increase 

over that of Benchmark 1. We model this portion of energy consumption by simply counting the  Hamming 

distance between the  instructions during the execution flow 

2) Instructions Word Weight: The energy consumption of an instruction also depends on the operands’ weight 

(number of “1”) which is the result of using dynamic CMOS logic in the design of ARM9TDMI [11]. 

According to our exper- iments,   we can consider a single weight energy coefficient for all instructions that 

will cause a negligible error in energy estimation but it will make the model simpler. Therefore, the instruction 

weight is added as a parameter to our model. 

3)  Number of Shift Operation:  To observe the possible effects of the shift operation on the energy consumption 

of the system, we conducted two different sets of experiments. One group consists of a large number of 

instructions with shifted operands while the other one contains the same instructions but without using this 

option. The experiments were repeated for all instructions that can use the shifted operand option and the results 

show that the shifted version consumes up to 28% more energy than normal version.  
4) Register Bank Bit Flips: A number of benchmarks based on MVN instruction were prepared to observe the 

effect of the register bank activity on the system energy consumption. The MVN instruction reads the value of 

the source operand, performs a bitwise NOT operation and then assigns the result to the destination register. 

Table I lists the benchmarks used in this experiment. 

TABLE 1 

Register Bank Benchmarks 

No: Benchmark 

1 

Benchmark 

2 

Benchmark 

3 

1 MVN 

R1,R2 

MVN 

R1,R1 

MVN 

R1,R2 

2 MVN 

R1,R2 

MVN 

R1,R1 

MVN 

R1,R2 

.. .. .. .. 

10000 MVN 

R1,R2 

MVN 

R1,R1 

MVN 

R1,R2 

 

In all benchmarks, there will be no further activity on the instruction bus or data bus after executing the last 

MOV instruction. In Benchmark 1, only the first MVN command results in register bank activity and the 

consequent instructions write the same 0×FFFFFFFF value into R1 register. Benchmark 2 uses the same 

register for input and output and causes 32 bit flips per cycle in R1 register. Energy measurement of Benchmark 

2 shows 3% increase over that of Benchmark 1. To clarify whether the energy consumption increase is related 

to the Hamming distance or the weight of the registers, we conducted another experiment using Benchmark 3. 

Benchmark 3 initializes all the registers to value 0×FFFFFFFF in order to increase the total register bank 

weight to the maximum possible value. Benchmark 1 on the other hand, initializes all the registers to 0 that 

lowers the total weight of the register bank to the minimum possible value. The energy measurement result  of  

Benchmark  3  shows  about  0.1%  deviation  from the energy consumption of Benchmark 1 that indicates 

that the register bank energy consumption is more related to the Hamming distance than the weight. Considering 

the outcome of this experiment, the number of bit flips in the register bank was added as a new parameter to 

the energy estimation model. 

5)   Pipeline  Stall:  So  far,  all  parts  of  (6)  are  covered with the exception of Estall . There are some 

instructions that can cause a pipeline stall that will lead to additional energy consumption in the system. These 

instructions include some types of memory access, multicycle instructions (such as MUL), and the wrong branch 

prediction. Hence, only the EX stage of the pipeline is active and the other stages are stalled and consume a 

constant amount of energy. 

According to their duration, pipeline stalls can be grouped as follows. 

a) The fixed length pipeline stall that delays the execution for a constant amount of cycles. (e.g., the SWP instruc-

tion that takes four cycles to execute). The extra energy consumption of these pipeline stalls is added to the base 

energy cost of the corresponding instructions. 

http://www.ijesrt.com/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


  ISSN: 2277-9655 

[Soni et al., 11(4): April, 2021]                                                                            Impact Factor: 5.164 

IC™ Value: 3.00  CODEN: IJESS7 

htytp: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [6] 

    
IJESRT is licensed under a Creative Commons Attribution 4.0 International License 

b) The variable length pipeline stall whose duration de- pends on some items like operand values, previously 

accessed memory addresses and correct prediction of target of Jump instructions. 

Estimating the exact energy consumption of the variable length pipeline stalls needs cycle-accurate simulation 

of the program. We analyzed the MiBench benchmark suite [8] applications and  chose the  average energy 

consumption of the  each  multicycle instruction as  the  base  energy cost  of that instruction. Although this 

approximation method causes a small error in the energy estimation model, it eliminates the need for cycle-

accurate simulation. 

 

4. ANALYSIS 
To compute the coefficients of the model, a statistical method known as regression analysis [15] is used. The 

energy model is assumed to be a linear polynomial function and the factors are extracted using linear regression 

analysis. In the linear regression analysis the model is in the following form [15] 

𝑦 =  𝑐0 +  𝑐1 𝑥1 +  𝑐2 𝑥2 + . . . + 𝑐𝑛 𝑥𝑛  +  𝑒 
where ci  is the regression coefficient , xi  is the data vector, y is the dependant value and e is the error of 

approximation. To find the ci  coefficients the least square method [15] was used. Given M  independent 

equations, regression analysis tries to extract the unknown coefficients by assigning different values to  them,  

re-evaluating the  polynomials and  comparing  the  result of each polynomial with the corresponding dependant 

value y.  This procedure, known as fitting [15], is repeated for all available equations until either convergence 

of all the coefficient values or reaching the maximum iteration.To provide the required equations for the fitting 

procedure,60 special test programs were prepared and their energy consumption were measured. Each test 

program was designed to magnify the effect of one specific model parameter. This improves the accuracy of 

the fitting procedure by reducing the regression model’s complexity. The combination of energy measurement 

values  of  these  benchmarks and  their  profile report (analyzed with Sim-profile), form 60 equations for the 

fitting procedure. The ARM9TDMI datasheet indicates that most instructions have two different forms that 

only one of them updates the flag register. For example ADD and ADDS both perform the addition operation 

but only ADDS updates the flag registers (e.g., Z flag is set when the result is zero or V flag when an 

overflow occurs). In the first version of the model, one coefficient was  assigned  for  each  one  of  these  pairs.  

But in order to achieve more accurate results without imposing unnecessary complexity on the model, for some 

instruction pairs  separate coefficients is  assigned for  each  member of the pair. In order to find the most 

effective instructions in total application energy consumption, the MiBench benchmark suite applications were 

analyzed with the  proposed energy model. The top 10 contributors are listed in Fig. 4. According to the results, 

the two versions of ADD and MOV instructions were separated, which improved the estimation accuracy of 

the model and confirmed the validity of our decision. 

 

 
Fig. 5.   Energy estimation model derivation process. 

 

Fig. 5 summarizes the approach that we have followed in this paper to develop the energy estimation model. 

It also illustrates  the  flow that  the  user  of  our  tool  must  follow to estimate the energy consumption of the 

application and identify the hotspots of the source code. 

 

 

 

http://www.ijesrt.com/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


  ISSN: 2277-9655 

[Soni et al., 11(4): April, 2021]                                                                            Impact Factor: 5.164 

IC™ Value: 3.00  CODEN: IJESS7 

htytp: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [7] 

    
IJESRT is licensed under a Creative Commons Attribution 4.0 International License 

TABLE II 

Final Results of Regression 

Instruction parameters 

Parameter Energy(nJ) 

ADD 0.89 

RSB 1.153 

BIC 1.049 

MVN  1.13 

AND 1.173 

CMP 0.978 

ADC 1.127 

LDR 1.84 

ORR 1.131 

B 0.79 

CMN 0.976 

SUB 1.143 

MOV 1.284 

SBC 1.113 

 

5. RESULTS 
The final results of the regression analysis is summarized in Table II. To measure the quality of the regression 

we used a criterion named coefficient of determination, which is denoted by R2 [15]. The reported coefficient 

of determination for our final regression analysis is 0.9987, which means 99.87% of all variations of the test 

applications energy consumption are captured by the proposed energy estimation model. 

 

In order to test the accuracy of the model in real world applications, a set of experiments were conducted on 

MiBench benchmark suite applications. The energy consumption of all applications are estimated with less 

than6%  error. Some sources of  error  in  our  energy estimation model are ignoring the Hamming distance and 

weight of address  bus  and  data  bus  and  using  a  constant  value  to model  the  energy  consumption of  

variable  length  pipeline stalls to avoid cycle-accurate simulation of the system. Considering the value of R2 it is 

expected to achieve better accuracy, which means the test programs can be improved to cover all aspects of 

microcontroller energy consumption. Having the final regression results, the energy coefficients were embedded 

in the Sim-profile simulator from Sim- pleScalar toolset to make the process of energy estimation easier. Since 

Sim-profile has the ability to profile the applica- tion based on a given simulation parameter, adding the energy 

consumption estimation ability makes it  an  energy profiler tool. This profiler tool is called MEET. MEET 

can be used for finding blocks of software with high energy consumption. It  can  also  provide useful  guidelines 

about  optimizing the energy consumption by reporting the cause of high energy consumption in hot regions. 
 

6. CONCLUSION 
An instruction-level energy estimation model for a microcontroller-based embedded system was  presented. By 

combining  similar  energy  coefficient values,  the  presented model became much simpler than most proposed 

models that can  speed  up  the  energy  estimation  process  and  therefore the development of the embedded 

systems. The model was validated against a physical hardware platform, and the error of estimation for a number 

of applications from the MiBench benchmark suite was less than 6%. Retargetability is another advantage of our 

proposed model that makes  it  easy  to  adjust  the  model  coefficients for  a new platform. The model coefficients 

can be calibrated by measuring the energy consumption of test programs for the new platform and rerunning 

the regression analysis. 

 

Also, a tool called MEET was developed, which receives a binary ARM9 application and profiles the energy 

consumption of the application on the microcontroller. The results can identify the hotspots of the code and help 

in selecting the best coding technique in order to optimize the total energy consumption of the application. 

http://www.ijesrt.com/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


  ISSN: 2277-9655 

[Soni et al., 11(4): April, 2021]                                                                            Impact Factor: 5.164 

IC™ Value: 3.00  CODEN: IJESS7 

htytp: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [8] 

    
IJESRT is licensed under a Creative Commons Attribution 4.0 International License 

 
7. REFERENCE 
[1]. V.  Tiwari,  S.  Malik,  and  A.  Wolfe,  “Power  analysis  of  embedded software:  A  first step  towards  

software  power  minimization,” IEEE Trans. VLSI Systems, vol. 2, no. 4, pp. 437–445, Dec. 1994. 

[2]. B. Klass, D. E. Thomas, H. Schmit, and D. F. Nagle, “Modeling inter- instruction energy effects in a 

digital signal processor,” in Proc. Digital Signal Processor, Power-Driven Microarch. Workshop in 

Conjunction with Int. Symp. Comput. Arch., Jun. 1998, pp. 18–23. 

[3]. G. Callou, P. Maciel, E. Tavares, E. Andrade, B. Nogueira, C. Araujo, and P. Cunha, “Energy 

consumption and execution time estimation of embedded system applications,” Microprocessors 

Microsyst., vol. 35, no. 4, pp. 426–440, 2011. 

[4]. N. Chang, K. Kim, and H. G. Lee, “Cycle-accurate energy consumption measurement and analysis: Case 

study of ARM7TDMI,” in Proc. ISLPED, 2000, pp. 185–190. 

[5]. S. Nikolaidis, N. Kavvadias, T. Laopoulos, L. Bisdounis, and S. Blionas, “Instruction level energy 

modeling for pipelined processors,” J. Embed- ding Comput., vol. 1, no. 3, pp. 317–324, Aug. 2005. 

[6]. V. Konstantakos, A. Chatzigeorgiou, S. Nikolaidis, and T. Laopoulos, “Energy consumption estimation 

in embedded systems,” IEEE Trans. Instrum. Meas., vol. 57, no. 4, pp. 797–804, Apr. 2008. 

[7]. S. Lee, A. Ermedahl, and S. L. Min, “An accurate instruction-level energy consumption model for 

embedded RISC processors.M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and 

R. B. Brown, “MiBench: A f 

[8]. ree, commercially representative embedded benchmark suite,” in Proc. IEEE Int. Workshop Workload 

Characterization, Dec. 2001, pp. 3–14. 

[9]. N.  Kavvadias, P.  Neofotistos, S.  Nikolaidis, K.  Kosmatopoulos, and T. Laopoulos, “Measurements 

analysis of the software-related power consumption of microprocessors,” IEEE Trans. Instrum. 

Measurement, vol.  53, no. 4, pp. 1106–1112, Aug. 2004. 

[10]. K. Zotos, A. Litke, E. Chatzigeorgiou, S. Nikolaidis, and G. Stephanides, “Energy  complexity  

of  software  in  embedded  systems,”  in  Proc. IASTED, Jun. 2005, pp. 17–27. 

[11]. S. Steinke, M. Knauer, L. Wehmeyer, and P. Marwedel, “An accurate and fine grain 

instruction-level energy model supporting software opti- mizations,” in Proc. Int. Workshop PATMOS, 

Sep. 2001. 

[12]. V. Konstantakos, A. Chatzigeorgiou, S. Nikolaidis, and T. Laopoulos, “Energy consumption 

estimation in embedded systems,” in Proc. IEEE IMTC, Apr. 2006, pp. 235–238. 

[13]. M. Lee, V. Tiwari, S. Malik, and M. Fujita, “Power analysis and minimization techniques for  

embedded DSP  software,” IEEE  Trans. VLSI Syst., vol. 5, no. 1, pp. 123–135, Mar. 1997. 

[14]. J. T. Russell and M. F. Jacome, “Software power estimation and optimization for  high  

performance, 32-bit  embedded processors,” in Proc. ICCD: VLSI Comput. Processors, Oct. 1998, pp. 

328–333 

[15]. S. Chatterjee and A. S. Hadi, Regression Analysis by Example. 4th ed., New York, USA: Wiley, 

2006 

http://www.ijesrt.com/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

